Subexponential parameterized algorithms on graphs of bounded-genus and H-minor-free graphs

نویسندگان

  • Erik D. Demaine
  • Fedor V. Fomin
  • Mohammad Taghi Hajiaghayi
  • Dimitrios M. Thilikos
چکیده

We introduce a new framework for designing fixed-parameter algorithms with subexponential running time—2 √ n. Our results apply to a broad family of graph problems, called bidimensional problems, which includes many domination and covering problems such as vertex cover, feedback vertex set, minimum maximal matching, dominating set, edge dominating set, clique-transversal set, and many others restricted to bounded-genus graphs. Furthermore, it is fairly straightforward to prove that a problem is bidimensional. In particular, our framework includes as special cases all previously known problems to have such subexponential algorithms. Previously, these algorithms applied to planar graphs, single-crossing-minor-free graphs, and map graphs; we extend these results to apply to bounded-genus graphs as well. In a parallel development of combinatorial results, we establish an upper bound on the treewidth (or branchwidth) of a bounded-genus graph that excludes some planar graph H as a minor. This bound depends linearly on the size |V (H)| of the excluded graph H and the genus g(G) of the graph G, and applies and extends the graphminors work of Robertson & Seymour. Building on these results, we develop subexponential fixedparameter algorithms for dominating set, vertex cover, and set cover in any class of graphs excluding a fixed graph H as a minor. In particular, this general category of graphs includes planar graphs, bounded-genus graphs, single-crossing-minor-free graphs, and any class of graphs that is closed under taking minors. Specifically, the running time is 2 √ n, where h is a constant depending only on H , which is polynomial for k = O(log n). We introduce a general approach for developing algorithms on H-minor-free graphs, based on structural results aboutH-minor-free graphs at the heart of Robertson & Seymour’s graph-minors work. We believe this approach opens the way to further development for problems on H-minor-free graphs. ∗MIT Laboratory for Computer Science, 200 Technology Square, Cambridge, Massachusetts 02139, USA, {edemaine, hajiagha}@mit.edu †Department of Informatics, University of Bergen, N-5020 Bergen, Norway, [email protected] ‡Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Campus Nord – Mòdul C5, c/Jordi Girona Salgado 1-3, E-08034, Barcelona, Spain, [email protected]. This author was supported by EC contract IST-1999-14186: Project ALCOMFT (Algorithms and Complexity) Future Technologies and by the Spanish CICYT project TIC-2002-04498-C05-03 (TRACER).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subexponential Algorithms for Partial Cover Problems

Partial Cover problems are optimization versions of fundamental and well studied problems like Vertex Cover and Dominating Set. Here one is interested in covering (or dominating) the maximum number of edges (or vertices) using a given number (k) of vertices, rather than covering all edges (or vertices). In general graphs, these problems are hard for parameterized complexity classes when paramet...

متن کامل

Faster Approximation Schemes and Parameterized Algorithms on H-Minor-Free and Odd-Minor-Free Graphs

We improve the running time of the general algorithmic technique known as Baker’s approach (1994) on H-minor-free graphs from O(n) to O(f(|H |)n) showing that it is fixed-parameter tractable w.r.t. the parameter |H |. The numerous applications include e.g. a 2-approximation for coloring and PTASes for various problems such as dominating set and max-cut, where we obtain similar improvements. On ...

متن کامل

Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs

The well-known bidimensionality theory provides a method for designing fast, subexponentialtime parameterized algorithms for a vast number of NP-hard problems on sparse graph classes such as planar graphs, bounded genus graphs, or, more generally, graphs with a fixed excluded minor. However, in order to apply the bidimensionality framework the considered problem needs to fulfill a special densi...

متن کامل

Linearity of grid minors in treewidth with applications through bidimensionality

We prove that any H-minor-free graph, for a fixed graph H, of treewidth w has an Ω(w)× Ω(w) grid graph as a minor. Thus grid minors suffice to certify that H-minor-free graphs have large treewidth, up to constant factors. This strong relationship was previously known for the special cases of planar graphs and bounded-genus graphs, and is known not to hold for general graphs. The approach of thi...

متن کامل

Fast Subexponential Algorithm for Non-local Problems on Graphs of Bounded Genus

We give a general technique for designing fast subexponential algorithms for several graph problems whose instances are restricted to graphs of bounded genus. We use it to obtain time 2 √ n) algorithms for a wide family of problems such as Hamiltonian Cycle, Σ-embedded Graph Travelling Salesman Problem, Longest Cycle, and Max Leaf Tree. For our results, we combine planarizing techniques with dy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004